
Embarrassingly Parallel Benchmark Under PVM

David Browning 1

Report RND-92-017 November 1992

NAS Systems Development Branch

NAS Systems Division

NASA Ames Research Center

Mail Stop 258-6

Moffett Field, CA 94035-1000

1 Computer Sciences Corporation, NASA Ames Research Center, Moffett Field, CA 94035-1000

Embarrassingly Parallel Benchmark Under PVM

David Browning
Computer Sciences Corporation
NASA Ames Research Center

Moffett Field, CA 94035-1000, USA

Abstract

Parallel Virtual Machine (PVM) is tested on a network of

SGI workstations. A PVM version of the Embarrassingly
Parallel (EP) benchmark, one of the NAS Parallel

Benchmarks, is ported from an Intel iPSC/860 version.
Details of the port and the author's experience with PVM
are described. Performance results from both iPSC/860
and PVM versions of the EP benchmark are presented.

PVM performed satisfactorily in these limited tests.
Speedups can be poor under PVM because of additional,
unexpected system loads on the workstations. Load
balancing is shown to be a more important issue for PVM
than for the Intel iPSC/860.

Introduction

Parallel Virtual Machine (PVM) [3] is a software package that allows

one to treat a heterogeneous network of computers as a single parallel
programming resource. The PVM package is comprised of two main
parts: a daemon process run on each participating computer in the
network, and a library of routines to access the PVM system from

within a program. PVM was recently installed on the NAS Processing
System Network.

This report describes an effort to test PVM on a simple parallel
programming problem: the Embarrassingly Parallel (EP) benchmark,
one of the benchmark kernels from the NAS Parallel Benchmarks [1].

The NAS Parallel Benchmarks are a collection of "paper and pencil"

benchmarks - so called because they are specified algorithmically in [1],
and actual implementation is left up to the benchmarker. A set of

sample codes demonstrating the benchmarks is available to assist in
this implementation. The EP benchmark is computationally intensive
and requires almost no communication between processors. This

makes it a good choice as an initial test case for PVM.

EP Benchmark

E. Barszcz (Code RNR) provided sample Fortran programs for each of
the NAS Parallel Benchmarks, including a version of the EP
benchmark for the Intel iPSC/860 [2]. This particular code was written

by P. Frederickson (formerly of RIACS) and D. Bailey (Code RNR). As

provided, the sample code solves a smaller problem than required by

[1]. Both problem size and memory requirements were easily modified

through a single PARAMETER statement in the Fortran program.

(The problem size is a measure of the total computational work

required, not the amount of memory required.) The sample program of

the EP benchmark prints the maximum elapsed time required by each

of the processors executing the kernel.

To verify the correctness of the sample program, it was scaled up to the

full size problem and run on the iPSC/860. Results from this test are

shown in Figure 1 and Table 1.

To use PVM, the PVM daemon process (pvmd) is invoked on one of

the computers in the network, typically the user's workstation. Pvmd

reads a file listing other participating host computers and automatically

invokes pvmd on each of those machines. Once pvmd is running on

each host computer, the user executes a host program from the UNIX

shell. This program will contain calls to PVM library routines, and will

typically initiate additional node processes. The PVM system

automatically executes these processes on the other host computers.

Pvmd may be run in an interactive mode to monitor and control some

aspects of the system.

The PVM library includes routines for initiation and synchronization

of processes, and communication between processes. The PVM library

is written in C, but a library of Fortran wrapper routines are provided

so that most PVM library routines are available to Fortran programs.

One exception is the routine pvm_mstat0, which returns an array of

string pointers (C data type **char). This data type cannot be accessed

from the Fortran language. The library routines in the PVM system

provide for automatic conversion of binary data between host

machines of different types.

As a matter of convenience in this effort, a single program was written

to provide both host and node processes. The host process shares the

computational workload equally with the node processes, but the host

process provides additional control over the node processes and

communicates with the user through standard input and output.

The PVM daemon process, the PVM library and the network of hosts

together comprise a single parallel programming environment. To
run the EP benchmark under PVM, it was necessary to modify parts of

the sample code specific to the iPSC/860, including initialization,

communication and timing, and port it to PVM. The relevant

iPSC/860 commands and routines are listed in Table 2, along with

PVM counterparts if any exist. Each is discussed more thoroughly

below.

2

Cubeexec

On the iPSC/860 at NAS, the command

cubeexec -t8 nodeprog

performs the following functions:

1. Allocates and attaches eight node processors for the user;

2. Loads a copy of the node program nodeprog into each of the

eight processors, which then begin execution;

3. Waits for all processors to finish execution;

4. Detaches the processors, returning them to the system.

Once compiled, the EP sample code comprises such a node program.

Under PVM, the host program invoked by the user must perform these

tasks. In the PVM version of the EP benchmark, the host program

queries the user for the number of nodes desired, and initiates those

processes with calls to the PVM library routine initiate(). Upon

completion, each process must check out of PVM with a call to the

PVM library routine leave(). Failure to do so will confuse the PVM

daemon process.

Mynode0, Numnodes0

The iPSC/860 calls mynode0 and numnodes0 have no corresponding

PVM library calls. However, each program running under PVM calls

the PVM library routine enroll0, which returns an integer, starting

from 0, uniquely identifying the PVM process. This integer can be

saved and used in place of a call to mynode0. In lieu of a numnodes0

call, the PVM host process must broadcast the total number of processes

to each node process. A PVM node process has no way to determine

this number itself.

Gdsum0, Gdhigh0

Of the many global arithmetic routines available to a node program on

the iPSC/860, only two were required by the EP benchmark sample

code: gdsum0 and gdhigh0. Gdsum sums each element in an array of

double precision floating point values across all the nodes. The array

of global sums is then available in each node. Gdhigh operates

similarly, returning the global maximum of each element instead of

the sum. Presumably, such routines can be highly optimized on the

iPSC/860 to take full advantage of the communication hardware and to
avoid bottlenecks. In the PVM version of the EP benchmark, these

routines were replaced with versions that worked under PVM. In each

routine, the node processes send their data to the host, where the

arithmetic is performed (sum or max), and then the host broadcasts the
result to all the nodes.

3

Dclock0

The EP benchmark sample code used the iPSC/860 routine dclock0 to

perform timing calculations. Dclock() returns the elapsed time in
seconds of each node. The maximum of these times is printed by the

benchmark program. Under PVM, each node process is a UNIX

process, so three times were of interest:, user CPU time, user + system
CPU time, and elapsed time. These were measured using BSD interval

timers, and accessed via the BSD calls setitimer0 and getitimer0. The

PVM version was instrumented much more thoroughly than the

sample code. Five sections of the benchmark were timed separately:

initialization, including enrollment, initiation and the broadcast of

numnodes; computation; and global summation of results with

gdsum. (Gdhigh is not formally part of the benchmark. It is only used

to determine the highest elapsed time of all the nodes, and is not timed

itself.) The resulting timings are shown in Tables 4 and 5.

PVM

For the most part, PVM worked as described by its documentation.

There were some discrepancies and ambiguities in the documentation,

but all were minor. They were reported to the PVM developers using

the email address supplied in the documentation. In one case, a PVM

developer responded by supplying revised man pages via email the

next day [4]. This demonstrates a high level of interest and support

from the developers, and is a favorable feature of this package.

The user interface of pvmd had some minor deficiendes that made it

somewhat inconvenient to use. None of them were serious enough to

prevent one from using PVM effectively. Although pvmd may be run

in the background, in which case it has no user interface, it was

necessary to run pvmd interactively during development and testing
of the EP benchmark, in order to control and monitor the progress of

PVM processes. Unfortunately, it is not possible to execute a PVM host

program directly from within an interactive pvmd session, making an
additional shell window necessary when running pvmd interactively.

When invoked, pvmd reads a list of host computers from a file. PVM

processes, whether invoked by the user or initiated by the host process,

are assigned to the host computers in this list in a round-robin fashion.
This is indeed the case when pvmd is first invoked, but the assignment

of hosts is not as predictable in subsequent epochs. (A new epoch

begins whenever there are no processes currently enrolled in the PVM

system. At each new epoch, the sequential numbers returned by

enroU0 begin again at zero.) In one case, a host file listed four host

computers. When pvmd was invoked with this hostfile, and the host

process initiated three other processes, each of the four PVM processes

4

was assigned to a distinct host computer in the list. Once the processes

completed execution, a new epoch began in pvmd. (If any process fails

to check out with a call to leave(), one may type "reset" in an

interactive pvmd session to begin a new epoch.) When the same four

PVM processes were initiated again, they were not assigned to the same

four distinct host computers. Instead, one machine did not participate,

and two processes were assigned to one of the other machines. This

behavior was repeated in the next subsequent epoch, but with a

different trio of host machines. For timing purposes, it was necessary

to have the PVM processes assigned to distinct machines when

executing the EP benchmark. Therefore it was necessary to quit and

restart the pvmd session each time the benchmark was run. It was also

necessary to quit and restart pvmd if the host file was modified, since it

is not possible to reread the host file from an active pvmd session.

The user interface of pvmd would be improved if the following
remedies were made:

1. It should be possible to execute a PVM host program directly

from within an interactive pvmd session.

2. In subsequent epochs, PVM processes should be assigned to

host computers in the same round robin fashion as in the first

epoch.

3. It should be possible to reread the host file from within an

interactive pvmd session without having to quit and restart

pvmd.

Workstations

In order to limit the scope of this effort and to expedite its completion,

only one type of computer was used in the PVM network: Silicon

Graphics Inc. (SGI) IRIS workstations. This made it possible to compile

a single binary executable file on the author's own SGI workstation and
distribute it to other SGI workstations without modification. This

simplified the development and testing of the benchmark under PVM.
Table 3 lists the workstations that were used in the tests, their IP

addresses, and their important hardware characteristics. All

workstations had 16MBytes of main memory, and all ran the IRIX 4.0.1

operating system. As in the iPSC/860 version, each node process

requires about 5 MBytes of memory, well below the 16 MBytes present
on each workstation.

Results

The PVM version of the EP benchmark ran successfully on 1, 2 and 4

SGI workstations. Execution times and speedups are presented in

Tables 4 and 5. Table 4 shows the results from the first tests, in which

5

two of the workstations, wk77 and wk107, had additional, unexpected

system loads. This caused wk77 to be a computational bottleneck in the

4-processor case, and wk107 in the 2-processor case. The speedups

shown in Table 4 are considerably less than the speedups shown in

Tables 1 and 5 for this reason. Upon further investigation, it was found

that wk77 had a superfluous, runaway process contending for CPU

time, leaving only half of the CPU for the PVM process. Wkl07 had

two similar runaway processes, leaving the PVM process with only one
third of the CPU (albeit one third of a faster CPU). A second set of tests

were performed after the runaway processes were killed. Results from

these tests are shown in Table 5.

Conclusion

PVM performed satisfactorily in the limited tests described here. Some

improvements were suggested for the pvmd user interface. The

speedups shown in Table 4 are considerably lower than expected, but
this is not due to the communication overhead within PVM. Instead,

proper load balancing is shown to be a critical issue when resource

availability is not known a priori. Because the EP benchmark is so

computationally intensive and requires almost no communication,

dynamic load balancing could be implemented fairly easily, and would

effectively reduce the bottlenecks incurred from varying system loads.

Such an effort is beyond the scope of this report. In other applications,

where communication is a more important consideration, load

balancing may be a far greater challenge.

BENCHMARK RESULTS:

CPU TIME = 141.9341

N = 2 ^ 28

NO. GAUSSIAN PAIRS =

COUNTS:

0 98257395.

1 93827014.

2 17611549.

3 1110028.

4 26536.

5 245.

6 0.

7 0.

8 0.

9 0.

210832767.

Figure 1. EP benchmark sample output (iPSC/860 sample code).

Number Processors

32

64

128

Time (seconds)

141.93

71.00

35.56

Speedup

2.00

3.99

Table 1. EP benchmark timings (iPSC/860 sample code).

Code compiled with if77 -02 -Knoieee.

Speedups shown relative to 32-processor case.

7

iPSC/860

cubeexec

mynode0

numnodes0

gdsum

gdhigh

PVM Equivalent

initiate()

enroll(), leave()

N/A

N/A

N/A

N/A

Remarks

Performed by host process.

Performed by each process.

Use return value of enroll().

Broadcast by host process.

Custom routine required.

Custom routine required.

Table 2. iPSC/860 vs. PVM: Commands and library routines.

Hostname

wk40

wk77

wk84

willard (wk96)*

wkl07

IP Address

129.99.48.3

129.99.48.7

129.99.50.26

129.99.48.61

129.99.48.6

Hardware Characteristics

4D/25TG, 20 MHz IP6 processor

4D/25TG, 20 MHz IP6 processor

4D/25TG, 20 MHz IP6 processor

4D/25TG, 20 MHz IP6 processor

4D/35TG, 36 MHz IP12 processor

Table 3. Workstations.

(*) Author's workstation.

8

Hostname/

Mynode

willard /

0

willard/

0

Times

(Seconds)

User

User+Sys

Elapsed

User

User+Sys

Elapsed

(1) (2) (3) (4)

0.00 0.00 0.00 9791.50

0.04 0.08 0.01 9800.03

50.09 0.04 0.01 9898.46

0.01 0.00 0.00 4895.29

0.06 0.00 0.00 4900.45

50.13 0.03 0.01 4957.46

(5) (6)

0.00 9791.50

0.01 9800.09

0.22 9948.82

0.00 4895.30

0.01 4900.52

619.30 5626.93

wkl07/ User 0.01 0.00 0.01 2335-81 0.00 2335-83

1 User+Sys 0.01 0.00 0.01 2340.13 0.00 2340.11

Elapsed 10.06 0.00 0.01 5576.36 0.00 5586.43

willard / User 0.00 0.00 0.00 2448.89 0.00 2448.89

0 User+Sys 0.05 0.03 0.00 2452.50 0.04 2452.62

Elapsed 50.24 0.18 0.00 2483.14 1470.31 4003.87

wk40/ User 0.00 0.00 0.00 2440.18 0.01 2440.19

1 User+Sys 0.04 0.00 0.00 2442.01 0.02 2442.07

Elapsed 10.08 0.00 0.08 2456.60 1496.95 3963.71

(7)

1.77

2.48

wk77/ User 0.08 0.00 0.00 2446.15 0.00 2446.15

2 User+Sys 0.03 0.00 0.00 2449.01 0.01 2449.05

Elapsed 40.07 0.00 0.04 3953.53 0.13 3993.77

wkl07 User 0.01 0.00 0.00 116628 0.00 116629

3 User+Sys 0.01 0.03 0.00 1169.59 0.01 1169.61

Elapsed 10.03 0.00 0.03 2630.10 132322 3963.38

Table 4. EP benchmark under PVM using 1, 2 and 4 workstations.

Additional system load on wk77 and wkl07.

Key to column entries:

(1) Enroll() library call.

(2) Initiation of node processes by host process. Includes reading

stdin to determine number of processes to initiate. Does not

include delay between host's initiate() call and node's startup.

(3) Broadcast (by host) and receipt (by nodes) of numnodes.

(4) Floating point computation.

(5) PVM version of gdsum0 routine.

(6) Total of (1)-(5). Max elapsed time used in speedup calculation

(7).
(7) Speedup over 1-workstation case. Adjacent to figures used in

calculation.

9

Hosmame/ Times (1) (2) (3) (4) (5) (6) (7)

Mynode (Seconds)

Willard / User 0.00 0.00 0.00 9799.17 0.00 9799.17

0 User+Sys 0.04 0.00 0.01 9812.75 0.01 9812,81

Elapsed 50.08 0.03 0.01 10007.28 0.16 10057.56 1

Willard/ User 0.00 0.00 0.00 490133 0.00 490133

0 User+Sys 0.02 0.01 0.00 4905.41 0.00 4905.44

Elapsed 50.11 0.07 0.01 4963.40 0.08 5013.67 2.01

wk40/ User 0.00 0.00 0.00 4877.19 0.00 4877.19

1 User+Sys 0.02 0.00 0.00 4880_4 0.00 4880,86

Elapsed 10.06 0.00 0.00 4900.45 63.13 4973.64

Willard / User 0.02 0.00 0.00 2449.14 0.00 2449.16

0 User+Sys 0.05 0.01 0.00 2452.69 0.03 2452.75

Elapsed 50.15 0.20 0.02 2485.79 0.24 2536.40 3.97

wk40/ User 0.00 0.00 0.00 2438.72 0.00 2438.72

1 User+Sys 0.03 0.08 0.00 2440.61 0.03 2440.67

Elapsed 10.06 0.00 0.00 2450.78 35.26 2496.09

wk77/ User 0.00 0.00 0.00 24392.7 0.00 2439.27

2 User+Sys 0.01 0.00 0.01 2441.48 0.01 2441.51

Elapsed 40.04 0.00 0.03 2451,89 34.22 2526.18

wk84 User 0.01 0.00 0.00 2453.35 0.03 2453.36

3 User+Sys 0.02 0.08 0.00 2469.62 0.01 2469.65

Elapsed 20.04 0.00 0.01 2477.52 8.55 2506.12

Table 5. EP benchmark under PVM using 1, 2 and 4 workstations.

No significant additional system load.

Key tO column entries:

(1) Enroll() library call.

(2) Initiation of node processes by host process. Includes reading

stdin to determine number of processes to initiate. Does not

include delay between host's initiate() call and node's startup.

(3) Broadcast (by host) and receipt (by nodes) of numnodes.

(4) Floating point computation.

(5) PVM version of gdsum0 routine.

(6) Total of (1)-(5). Max elapsed time used in speedup calculation

(7).
(7) Speedup over 1-workstation case. Adjacent to figures used in

calculation.

10

References

[1] D.H. Bailey, J. Barton, T. Lasinski, H. Simon, eds., "The NAS

Parallel Benchmarks," NAS Report RNR-91-002, January 1991.

[2] E. Barszcz, NAS Applied Research Branch, personal

communication, June 1992.

[3] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, V. Sunderam, "A

User's Guide to PVM: Parallel Virtual Machine," Report

ORNL/TM-11826, Oak Ridge National Laboratory, Oak Ridge,

TN, July 1991.

[4] R. Manchek, Computer Science Department, University of

Tennessee, Knoxville, personal communication, June 1992.

11

